REFERENCE

CONTENTS

DESCRIPTION

LEGEND (SOIL & ROCK)

LAB TEST RESULTS CORE PHOTOGRAPHS

SITE PHOTOGRAPH

SUPPLEMENTAL LEGEND (GSI)

BORE LOGS & CORE REPORT

TITLE SHEET

SITE PLAN PROFILE CROSS SECTIONS

SHEET NO.

2Α

6-9

10

11-12

3845

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY	WAKE				
		ION BRIDG	E NO. 196	ON SR	2308
		OVER MOC			
SITE DE	SCRIPTION _	16 + 56.5 - L			

STATE PROJECT REFERENCE NO. B-4662

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABDRATORY SAMPLE DATA AND THE IN SITU (IM-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE TO MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

C. TANG, EI CATLIN ENG. & SCI. T. CHALMERS E. SWAIN INVESTIGATED BY <u>C. TANG,</u> EI DRAWN BY _D. BROWN, PE CHECKED BY C. TANG, EI SUBMITTED BY __D. BROWN, PE DATE _SEPTEMBER 2017

UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO. SHEET NO. 2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	UNELSS, OHBERU, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-0 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CATSTALLINE SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE.
7. PASSING	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GRANULAR CLAY MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
#40 38 MX 58 MX 51 MN PEAT SOILS SOILS SOILS SOILS SOILS SOILS	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
LL 40 MX 41 MN LITTLE OR PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USUAL TYPES STONE FRAGS. FINE CHITY OF CANEY CHITY CLAYER MATTER	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OSPICE THES STORE FRANCES. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER OF MAJOR GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MHTERIALS SAND	✓ PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE		DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED	TT	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SPIT DOT TEST BORING SLOPE INDICATOR	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR LUUSE 4 10 100 GRANULAR MEDIUM DENSE 10 10 300 N/A	VST PMT INSTRICTION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED. WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
MATERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
VERT DENSE 2 DW		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	── INFERRED SOIL BOUNDARY ← CORE BORING SOUNDING ROD	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
MATERIAL	A ALLUMIAL SOIL BOUNDARY A PIEZOMETER	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
HARD > 30 > 4	INSTRUCTION	ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	LISED IN THE TOP 3 EFET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - EMBANKMENT OR BACKFILL SHALLOW UNDERCUT CONTROL OF BACKFILL	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 _d - DRY UNIT WEIGHT	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
(SAT,) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC PLASTIC CONTROL TO CONTRO	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY BY FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) SEMISULID; REQUIRES DATING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS \(\omega \) - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	BENCH MARK: BL-101
(PI) PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	BENCH PIRIX, BE 101
- MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: 280.46 FEET
OM _ OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED Ø.16 - 1.5 FEET	NOTES:
PEGLIBES ADDITIONAL WATER TO	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	CME-55 6° CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET	
PLASTICITY	8* HOLLOW AUGERS	INDURATION	1
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS X-N Q	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC Ø-5 VERY LOW	TUNGCARBIDE INSERTS	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST CASING W/ ADVANCER HAND TOOLS: POST HOLE DIGGER	CRAINE CAN BE CERABATED FROM CAMBLE WITH CTEEL BRODE.	
HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER POST HOLE DIGGER A TRICONE 25/8 STEEL TEETH HAND AUGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE 'TUNG-CARB. COUNTRY OF	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	X CME 45B CORE BIT VANE SHEAR TEST	DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SHAPP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1
		ORDIN DE DIERRO MUNUOS UNHINO.	DH1E: 6-10-14

ECT REFERENCE NO.	SHEET NO.
-4662	2A

DATE: 8-19-16

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (CSI) TABLES

AASHTO LRFD Figure 10.4.6.4-1 $-$ Determination of GSI for Journal Control of GSI for GSI f	inted Ro	ock Mass (Marinos and	Hoek, 2000)				AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek, 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000)		м Ф			8 9 0	s e c e s	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos. P and Hoek E., 2000)
From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Guoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS	sh unweathered su	ரன்	Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfa with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfa with soft clay coatings or fillings	From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Focate the position in the pox that corresponds to the condition of the discontinuities and estimate the average value controlled failures. Meer and socothy moderate lightly weathered continuous weak planar discontinuities are present, these will dominate the pehaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for pla a slight shift to the right in the columns for the rock mass or fillings with a safety of the presence of groundwater and this can be allowed for pla a slight shift to the right in the columns for fair, bood and real planes of freed surfaces with compact of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass of the rock mass or fillings with a safety of the rock mass or fillings with a safety of the rock mass o
STRUCTURE		· '			_ITY 📥		COMPOSITION AND STRUCTURE
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities BLOCKY - well interlocked un-	 PIECES 	90			N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability. 60
disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	F ROCK	70					B. Sand- stane with Stane and State or silty shale State State or silty shale Siltstone
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	OCKING OF		50				thin inter-layers of layers of siltstone in similar amounts amounts amounts amounts
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	- INTERL			30			C. D. E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H. F. Tectonically deformed, intensively folded/faulted, sheared clayey shale or siltstone with broken and deformed sandstone layers forming an almost chaotic structure
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	 				20		G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed sints or male for the control of the
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	_ II _	N/A N	A /			10	sandstone are transformed into small rock pieces. Means deformation after tectonic disturbance

N/A

5.5

GROUND WTR (ft)

HAMMER TYPE Automatic

GEOTECHNICAL BORING REPORT BORE LOG

Wild Description Fig. 1/2 1/			BORE LOG									
BORING NO. EB1-A STATION 16+22 OFFSET 12 ft LT ALIGNMENT -L O HR. N/A	WBS 38457.1.2	TIP B-4662 C	COUNTY WAKE	GEOLOGIST C.T.Tang		WBS 38457.1.2	TIP B-4662 COUN	ITY WAKE	GEOLOGIST C.T.Tang	OLOGIST C.T.Tang		
COLLAR ELEV. 28.1.1 TOTAL DEPTH 8.4 ft NORTHING 782.932 EASTING 2,197,737 24 HR. 5.5	SITE DESCRIPTION Bridge No. 19	6 on SR 2308 (Fowler Rd.)) over Moccasin Creek		GROUND WTR (ft)	SITE DESCRIPTION Bridge No.	. 196 on SR 2308 (Fowler Rd.) over	r Moccasin Creek		GROUND WT		
DRILLER T. Chalmers START DATE 08/23/17 COMP. DATE 08/23/17 SURFACE WATER DEPTH N/A DRILLER T. Chalmers START DATE 08/23/17 COMP. DATE 08/23/17 SURFACE WATER DEPTH N/A DRILLER T. Chalmers START DATE 08/23/17 COMP. DATE 08/23/17 COMP. DATE 08/23/17 SURFACE WATER DEPTH N/A DRILLER T. Chalmers START DATE 08/23/17 COMP. DATE 08/23/17 COMP. DATE 08/23/17 SURFACE WATER DEPTH N/A DRILLER T. Chalmers START DATE 08/23/17 COMP. DATE 08/23/17 SURFACE WATER DEPTH N/A DRILLER T. Chalmers START DATE 08/23/17 COMP. DATE 08/23/17 COMP. DATE 08/23/17 SURFACE WATER DEPTH N/A CORE SIZE NO TOTAL RUN 2.1 ft CORYSTALLINE ROCK Pink and Gray, Very Slightly Weathered, Hard, Granite with Close to Moderately Close Fracture (SSI-93-40) Rock Start DATE 08/23/17 COMP. DATE	BORING NO. EB1-A	STATION 16+22	OFFSET 12 ft LT	ALIGNMENT -L-	0 HR . N/A	BORING NO. EB1-A	STATION 16+22	OFFSET 12 ft LT	ALIGNMENT -L-	0 HR.		
DRILLER T. Chalmers START DATE 08/23/17 COMP. DATE 08/23/17 COMP. DATE 08/23/17 COMP. DATE 08/23/17 SURFACE WATER DEPTH N/A	COLLAR ELEV. 281.1 ft	TOTAL DEPTH 8.4 ft	NORTHING 782,932	EASTING 2,197,737	24 HR. 5.5	COLLAR ELEV. 281.1 ft	TOTAL DEPTH 8.4 ft	NORTHING 782,932	EASTING 2,197,737	24 HR.		
DRIVE DEPTH BLOW COUNT BLOWS PER FOOT CITY BLOW COUNT BLOWS PER FOOT CITY BLOW COUNT BLOWS PER FOOT CITY	DRILL RIG/HAMMER EFF./DATE CAT13	14 CME-45B 82% 04/15/2016	DRILL METHOD Mu	d Rotary HAMN	IER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE CA	AT1314 CME-45B 82% 04/15/2016	DRILL METHOD	Mud Rotary HAMM	IER TYPE Automa		
285				SURFACE WATER DEPTH N	/A	DRILLER T. Chalmers	START DATE 08/23/17	COMP. DATE 08/23/17	SURFACE WATER DEPTH N	/A		
285	ELEV DRIVE DEPTH BLOW COUNT		11 1.7 101	SOIL AND ROCK DES	SCRIPTION							
280 281.1 0.0 4 4 3 3	(ft) (ft) (0.5ft 0.5ft 0.5	SH 0 25 50	75 100 NO. MOI G	ELEV. (ft)	DEPTH (ft)	ELEV RUN DEPTH RUN RATE	L RUN SAMP. SIRATA E REC. RQD SAMP. REC. RQD		DESCRIPTION AND REMARKS			
281.1 GROUND SURFACE 0.0 281.1 GROUND SURFA						(ft) (ft) (ft) (ft) (Min/f	ft) (11) (11) NO. (11) (11)	G				
281.1 GROUND SURFACE 0.0 ROADWAY EMBANKMENT Brown, Silty Sand 277.1 4.0 2 1 99/0.2 276.1 Gray, Silty Sand 3.0 Gray, Silty Sand 5.0 WEATHERED ROCK Find and Black (Granite) CRYSTALLINE ROCK Plink and Gray, Very Silightly Weathered, Hard, Granite with Close to Moderately Close Fracture (GSI-35-40) Boring Terminated at Elevation 272.7 ft In Notes: 1. Core barrel damaged. Coring terminated. 272.7 CRYSTALLINE ROCK Plink and Gray, Very Silightly Weathered, Hard, Granite with Close to Moderately Close Fracture (GSI-35-40) Boring Terminated at Elevation 272.7 ft In Sat. 276.1 GROUND SURFACE 0.0 ROADWAY EMBANKMENT Boring Terminated at Elevation 272.7 ft In	285			•		274.8 6.3 2.1 N=60/0	<u>/0.0 (1.6) (1.0) (1.6) (1.0) </u>) 274.8	CRYSTALLINE ROCK			
280 281 0.0 4 4 3 From 1 272.7 ft In Crystalline Rock (Granite) ROADWAY EMBANKMENT Brown, Silty Sand 277.1 4.0 2 1 99/0.2 275 274.8 6.3 60/0.0 50/0.0 100/0.2 100/0.							1.0 76% 48%	272.7 Pink and Gra	y, Very Slightly Weathered, Hard, Granite Moderately Close Fracture [GSI=35-40]	with Close to		
277.1 4.0 2 1 99/0.2	280 281.1 0.0 4 4 3	7		ROADWAY EMBA	NKMENT			Boring Termi	nated at Elevation 272.7 ft In Crystalline F	Rock (Granite)		
275 274.8 6.3 60/0.0 Sat. 276.1 Gray, Silty Sand 5.0		1 1 /		278.1	3.01					4		
275 274.8 6.3	T 2 1 99/0	0.2		ALLUVIAL 276.1 Gray, Silty Sa	nd <u>5</u> .0				. Core parrer damaged. Coring terminated	J.		
Pink and Gray, Very Slightly Weathered, Hard, Granite with Close to Moderately Close Fracture [GSI=35-40] Boring Terminated at Elevation 272.7 ft In	275 274.8 6.3 60/0.0		100/0.2	.274.8 WEATHERED F	6.3			-				
Close Fracture [GSI=35-40] Boring Terminated at Elevation 272.7 ft In				272.7 CRYSTALLINE	ROCK 8.4							
Boring Terminated at Elevation 272.7 ft In				Hard, Granite with Close	to Moderately							
Gyventros Race (Grants)				Boring Terminated at Elev	ation 272.7 ft In							
				Crystalline Rock (C	Granite)							
	±							-				
1												
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				•								
### ### #### #########################			‡									
1								-				
TOOL DOT THE SERVICE S			‡									
				•								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
DODU BOOK DOOR DE MANS GEO BEOOK BENEVE DOOR DE MANS GEO BEOOK BENEVE DOOR DOOR DE MANS GEO BEOOK DE MANS GEORD DE MANS GEO BEOOK DE MANS GEORD DE M								-				
DODI 1000 E PRIEZZ GEO DOTRE E PRIEZZ GEO PR			‡									
COOL BOOKE BOOKE BASES OFF SECRETARY NO. DOT GOT GOT BOOKE BASES OFF SECRETARY NO. DOT GOT GOT BOOKE BASES OFF SECRETARY NO. DOT GOT BOOKE BASES	<u> </u>											
CODULED TO THE PARKS GET DE ROY OF THE PARKS GET DE RO)(6)											
The state of the								-				
CDOIN BORE DOUBLE Préss 7 CEU Press 1 Press 2 CEU Press 3 CEU			‡									
CDOL BOOKE DOOR TO THE PRINCE OF THE PRINCE	한 +											
	† [g07]											
								-				
			‡									
	 		‡									
				•				-				
			<u> </u>									
			‡									
			‡									

GEOTECHNICAL BORING REPORT BORE LOG

	D	ORE LOG		
WBS 38457.1.2	TIP B-4662 COUNTY	Y WAKE	GEOLOGIST C.T.Tang	
SITE DESCRIPTION Bridge No. 19	96 on SR 2308 (Fowler Rd.) over N	Moccasin Creek		GROUND WTR (ft)
BORING NO. EB1-B	STATION 16+23	OFFSET 15 ft RT	ALIGNMENT -L-	0 HR. N/A
COLLAR ELEV. 279.9 ft	TOTAL DEPTH 14.9 ft	NORTHING 782,911	EASTING 2,197,754	24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE CAT13	314 CME-45B 82% 04/15/2016	DRILL METHOD Mud	Rotary HAMMI	ER TYPE Automatic
DRILLER T. Chalmers	START DATE 08/25/17	COMP. DATE 08/25/17	SURFACE WATER DEPTH N/	A
DRIVE DEPTH BLOW COUNT (ft) (ft) (ft) 0.5ft 0.5ft 0.5ft	─	75 100 NO. MOI G	SOIL AND ROCK DESC	CRIPTION DEPTH (ft
275.9 4.0	4	M	279.9 GROUND SURFA ROADWAY EMBANI Brown and Tan, Silty 276.9 ALLUVIAL Gray, Silty Sand, with So Fragments, Coarse Sand and	KMENT / Sand
270 3 4 5	5		266.6 265.1 RESIDUAL 265.0 Tan and Brown, Silty	13. y Sand 14.
			CRYSTALLINE RO (Granite) Boring Terminated with Penetration Test Refusal at E ft In Crystalline Rock (Standard Elevation 265.0

SHEET 7

GEOTECHNICAL BORING REPORT BORE LOG

								SUKE	L	UG				
WBS 3	8457.1.2			TI	P B-466	2	COUN	TY WAKE	Ξ				GEOLOGIST C.T.Tang	
SITE DE	SCRIPTION	ON Bri	dge No	. 196	on SR 23	08 (Fowle	er Rd.) ove	r Moccasir	Cre	eek				GROUND WTR (ft)
BORING	NO. EE	32-A		S	TATION	16+99		OFFSET	Γ 1	1 ft LT			ALIGNMENT -L-	0 HR . N/A
COLLAF	R ELEV.	281.0 ft		TO	OTAL DE	PTH 12.	0 ft	NORTH	ING	782,9	79		EASTING 2,197,797	24 HR. 3.0
DRILL RI	G/HAMMEF	R EFF./D	ATE CA	AT1314	CME-45B 8	32% 04/15/2	2016	1	П	DRILL N	METHO	D M	ud Rotary HAMI	MER TYPE Automatic
	R T. Cha				TART DA			сомр.					SURFACE WATER DEPTH N	
, DF	RIVE DED		OW COI	_ !			/S PER FOC			SAMP.	V /	L	•	
-/#\ E	LEV (ft)				0	25	50		00	NO.	МОІ	O G	SOIL AND ROCK DES	CRIPTION DEPTH (f
28028	81.0 0.0	5	5	3	8						M T		281.0 GROUND SURF ROADWAY EMBAN 278.5 Brown, Silty Se ALLUVIAL Gray, Silty Sand, with T	IKMENT and
275	‡				 						Jai.			
2	72.5 + 8.5	5			<u> </u>				:				Dark Gray, Sandy Clay	, with Wood
	72.5	WOH	WOH	3	 	.			:		Sat.		Fragments	
270	69.0 + 12.	0			 			60/0	\dashv				269.0	12
													Boring Terminated wit Penetration Test Refusal at ft On Crystalline Rock ft On Crystalline Rock ft On Crystalline Rock ft On Crystalline Rock ft On Crystalline Rock	Elevation 269.0

SHEET 8

N/A

FIAD

GROUND WTR (ft)

HAMMER TYPE Automatic

GEOTECHNICAL BORING REPORT BORE LOG

									BC	<u> </u>	LO	G																														
	S 3845					B-4662				WAKE					GEOL	.ogist	C.T.	Tang					WBS	3845	7.1.2				TIP	B-466	32	C	COUNT	TY W	AKE			G	GEOLOGIST C.T.Tang			
SIT	E DESC	RIPTIO	N Brid	ge No.	196 oi	n SR 230	8 (Fowle	r Rd.) c	over M	occasin	Creek				_					GROU	IND WT	R (ft)	SITE	DESC	RIPTIO	ON B	ridge N				08 (Fow	ler Rd.	.) over	Mocca	asin Cre	ek						GROUND V
во	RING NO). EB2-	-B		ST	ATION	16+99			OFFSE1					ALIGN	MENT	-L-			0 HR.		N/A	BORING NO. EB2-B STATION 16+99						OFF	SET 1	3 ft RT		A	LIGNME	NT -L-		0 HR.					
СО	LLAR EI	EV . 28	31.4 ft		то	TAL DEF	PTH 19.	0 ft	ı	NORTH						ING 2,	,197,8	12]:	24 HR.	. Г	IAD	COLLAR ELEV. 281.4 ft TOTAL DEPTH 19.0 ft					NOF		782,96				2,197,8	12	24 HR.						
				E CA		ME-45B 8								D Mu	ud Rotary			ŀ	HAMME	R TYPE	Autom	atic									82% 04/1					DRILL ME						IMER TYPE Aut
	LLER					ART DA				COMP.				1 1	SURF	ACE W	ATER	DEPT	TH N/A	4				LER		Imers					TE 08/			CON	IP. DA	TE 08/2	5/17	SI	URFACE	WATER	DEPTH	N/A
ELE (ft)	DRIVE ELEV	DEPTH (ft)	0.5ft	0 5# T	N I	0	BLOW 25	/S PER 50		5 1			▼/	0 1			OIL AND	D ROCK	K DESC	RIPTIC				E SIZE				RILL		AL RU UN	N 10.0		ΡΔΤΔ	١.,,								
()	(ft)	(1.7)	0.511	0.511	0.511	0	20	J0		J 1	00	0.	<u>MOI</u>	G	ELEV. (ft)						DEF	TH (ft)	ELEV (ft)	ELEV	DEP1	TH RUI	N R	ATE //in/ft)	REC.	RQD (ft) %	SAMP. NO.	REC.	RATA RQD (ft) %	Ö				DESC	CRIPTION	AND REM	MARKS	
005																								(ft)	+ ` '		, (IVI	/1111/11)	%	%		%	%	G					agin Car	ina @ 11	0.4	
285		‡													-								267.4	267.4	14.0	0 3.0	0 2:1	15/1.0	(2.0)	(1.8)		(3.4)	(3.2)		267.4	D'. I			CRYSTA	ing @ 14.	OCK	''. ''I Ola a ta
	281.4	+ 0.0													281.4			OUND :				0.0	265	264.4	17.0		2:2	01/1.0 25/1.0	(1.4)	(1.4)		68%	64%		-	PINK a	and Gray, N	Modera	tely Close	Fracture [GSI=48-53	ite with Close to
280		‡	2	3	2	5							М		278.9			WAY E and Ta				2.5		262.4	19.0	2.0 0 5.0	2:2	30/1.0 20/1.0	70%	70%					262.4	Borino	n Termins	ated at	Elevation	262 4 ft In	Crystalline	Rock (Granite)
	277.4	4.0				ļ: : : :												ALLU Gray, Si	JVIAL			2.5			‡	3.0				See Note 1				<u> </u>	_	Donnig	g reminic	aleu al	Lievation	202.4 10 111	Orystalline	rtock (Granite)
275		Ī	3	1	2	• 3							W					Jiay, Oii	nty Garn	u				257.4	+ 24.0	0											1 Core	e harrel	N Il siezed a	lotes:	onded in bo	rehole
	272.9	8.5				[:::::									<u> 274.4</u>	Gray, S	Sandy	Clay, w	ith Woo	od Fragr	ments				‡												1. 0010	o barror	0.020a a	na abanac	nidod iii be	TOTIOIO.
		‡	WOH	WOH	WOH	0		- -					Sat.												‡									F	=							
270		‡				1.									269.4	- — — -		RESI	DUAL .			12.0			Ŧ									l E								
	267.9	13.5	14	60/0.0		::! <u>:-</u> :	+	-:		60/0	+		W		267.4			nd Brow	vn, Silty			14.0			-									[-							
265		‡									41				-	Pink a	and Gra	av. Verv	Sliahth	y Weath Moder	nered,				‡									<u> </u>								
		‡													262.4	(Close	Fracture	e [GSI=	48-53]		19.0			‡									<u> </u>	_							
		Ŧ														Boring	Termir Crysta	nated at alline Ro	t Elevat ock (Gr	ion 262 anite)	.4 ft In				‡																	
		Ī													-										‡																	
		Ī													•										‡									F	-							
		‡													<u> </u>										Ŧ									F								
		‡																							Ŧ									1 E	-							
		‡													-										Ŧ									1 E								
		‡																							Ī									1 E	_							
		‡																							‡									1 -								
		‡													-										‡									1								
		Ŧ												F	•										‡									-	=							
		Ŧ													-										‡																	
_		Ŧ													•										‡										_							
3/07/1		⇟													_										‡									F								
TC 08		‡																							Ŧ									F								
DT.G		‡																							Ŧ									1 F	_							
O D		‡													-										Ŧ									1 F								
N CAS		‡																							\pm									1 E	-							
BH.0		‡													-										<u> </u>									<u> </u>								
0196		‡																							‡									1 <u>E</u>	_							
SRDG		‡													•										‡																	
EO_F		Ŧ													-										‡																	
362_G		Ī												F	•										‡										-							
: B46		Ŧ													-										‡																	
UBLE		Ī												F	•										‡										-							
E DO		Ī												[-										‡																	
BOR		-																							‡																	
CDOT		‡												E											Ŧ									F	-							
ž L			1																			- 1	1	1	Т	- 1	- 1		ı	1		1	1	1 -								

PROJECT REFERENCE NO.	SHEET NO.
B-4662	10

LAB TEST RESULTS

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

ASTM D7012

 WBS No.: 38457.1.2
 Test Date: 9/6/2017

 TIP No.: B-4662
 Tested By: J. Evans

 County: Wake

Description: Bridge No. 196 on SR 1726 (Henry Baker Rd) over Moccasin Creek

Test No.	1	2	
Boring ID	EB1-A	EB2-B	
Station	16+22	16+99	
Sample ID	RS-1	RS-2	
Sample Depth, ft	6.7	17.9	
Core Length #1, in.	4.006	4.014	
Core Length #2, in.	4.017	4.022	
Core Length #3, in.	4.014	4.020	
Avg. Core Length, in.	4.012	4.019	
Core Dia. #1, in.	1.985	1.975	
Core Dia. #2, in.	1.984	1.979	
Avg. Core Dia., in.	1.985	1.977	
Length/Dia. Ratio	2.02	2.03	
X-Sectional Area, in ²	3.09	3.07	
Weight, Ib	1.1735	1.1515	
Unit Weight, pcf	163.39	161.30	
Break Type	1	2	
Load at Failure, lb	42,090	47,994	
Correction Factor	1.00	1.00	
Comp. Strength, psi	16,310	19,340	
Comp. Strength, ksf	2,349	2,785	

Rock Descriptions:

Test 1: Pink and Gray, Very Slightly Weathered, Hard, Granite with Moderately Close to Close Fractures
Test 2: Pink and Gray, Very Slightly Weathered, Hard, Granite with Moderately Close to Close Fractures
eak Types:

PROJECT REFERENCE NO.	SHEET NO.
B-4662	11

CORE PHOTOGRAPHS

BORING EBI-A STA.16+22 -L-,12 FT LT DEPTH:6.3 FT TO 8.4 FT

END OF CORING 8.4 FT

PROJECT REFERENCE NO.	SHEET NO.
B-4662	12

CORE PHOTOGRAPHS

BORING EB2-B STA.16+99 -L-,13 FT LT DEPTH:14.0 FT TO 19.0 FT

FEET

B-4662 13

SITE PHOTOGRAPH

BRIDGE 196

PHOTOGRAPH NO.1. VIEW LOOKING EAST FROM END BENT #1 SIDE.